tfmri.convex.ConvexFunctionL1Wavelet
tfmri.convex.ConvexFunctionL1Wavelet¶
- class ConvexFunctionL1Wavelet(domain_shape, wavelet, mode='symmetric', level=None, axes=None, scale=None, dtype=tf.float32, name=None)[source]¶
Bases:
tensorflow_mri.python.ops.convex_ops.ConvexFunctionLinearOperatorComposition
A
ConvexFunction
representing an L1 wavelet regularization term.For a given input \(x\), computes \(\lambda \left\| Dx \right\|_1\), where \(\lambda\) is a scaling factor and \(D\) is a wavelet decomposition operator (see tfmri.linalg.LinearOperatorWavelet).
- Parameters
domain_shape – A 1D integer tf.Tensor. The domain shape of this linear operator. This operator may have multiple domain dimensions.
wavelet –
A str or a `pywt.Wavelet`_, or a list thereof. When passed a list, different wavelets are applied along each axis in
axes
.mode –
A str. The padding or signal extension mode. Must be one of the values supported by tfmri.signal.wavedec. Defaults to
'symmetric'
.level – An int >= 0. The decomposition level. If None (default), the maximum useful level of decomposition will be used (see tfmri.signal.max_wavelet_level).
axes –
A list of int. The axes over which the DWT is computed. Axes refer only to domain dimensions without regard for the batch dimensions. Defaults to None (all domain dimensions).
scale – A float. A scaling factor.
dtype – A tf.dtypes.DType. The dtype of the inputs.
name – A name for this
ConvexFunction
.
Initialize this
ConvexFunction
.