tfmri.convex.ConvexFunctionTikhonov
tfmri.convex.ConvexFunctionTikhonov¶
- class ConvexFunctionTikhonov(transform=None, prior=None, domain_dimension=None, scale=None, dtype=tf.float32, name=None)[source]¶
Bases:
tensorflow_mri.python.ops.convex_ops.ConvexFunctionAffineMappingComposition
A
ConvexFunction
representing a Tikhonov regularization term.For a given input \(x\), computes \(\lambda \left\| T(x - x_0) \right\|_2^2\), where \(\lambda\) is a scaling factor, \(T\) is any linear operator and \(x_0\) is a prior estimate.
- Parameters
transform – A
tf.linalg.LinearOperator
. The Tikhonov operator \(T\). Defaults to the identity operator.prior – A tf.Tensor. The prior estimate \(x_0\). Defaults to 0.
domain_dimension –
A scalar integer tf.Tensor. The dimension of the domain.
scale – A float. The scaling factor.
dtype – A
tf.DType
. The dtype of the inputs. Defaults tofloat32
.name – A name for this
ConvexFunction
.
Initialize this
ConvexFunction
.