tfmri.image.phantom
tfmri.image.phantom¶
- phantom(phantom_type='modified_shepp_logan', shape=[256, 256], num_coils=None, dtype=tf.float32, return_sensitivities=False)[source]¶
Generates a phantom image.
Available 2D phantoms are:
shepp_logan: The original Shepp-Logan phantom 1.
modified_shepp_logan: A variant of the Shepp-Logan phantom in which the contrast is improved for better visual perception 2.
Available 3D phantoms are:
kak_roberts: A simplified 3D extension of the Shepp-Logan phantom 3.
modified_kak_roberts: A variant of the Kak-Roberts phantom in which the contrast is improved for better visual perception 4.
koay_sarlls_ozarslan: Same as
modified_kak_roberts
.
- Parameters
phantom_type – A
string
. If 2D, must be one of{'shepp_logan', 'modified_shepp_logan'}
. If 3D, must be one of{'kak_roberts', 'modified_kak_roberts', 'koay_sarlls_ozarslan'}
. Defaults tomodified_shepp_logan
for 2D phantoms andmodified_kak_roberts
for 3D phantoms.shape – A list of
ints
. The shape of the generated phantom. Must have length 2 or 3.num_coils –
An int. The number of coils for parallel imaging phantoms. If None, no coil array will be simulated. Defaults to None.
dtype – A
string
ortf.DType
. The data type of the generated phantom.return_sensitivities –
A boolean. If True, returns a tuple containing the phantom and the coil sensitivities. If False, returns the phantom. Defaults to False.
- Returns
A
Tensor
of typedtype
containing the generated phantom. Has shapeshape
ifnum_coils
is None, or shape[num_coils, *shape]
ifnum_coils
is not None.If
return_sensitivities
is True, returns a tuple of two tensors with equal shape and type, the first of which is the phantom and the second the coil sensitivities.- Raises
ValueError – If the requested ND phantom is not defined.
References
- 1
Shepp, L. A., & Logan, B. F. (1974). The Fourier reconstruction of a head section. IEEE Transactions on nuclear science, 21(3), 21-43.
- 2
Toft, P. (1996). The radon transform. Theory and Implementation (Ph. D. Dissertation)(Copenhagen: Technical University of Denmark).
- 3
Kak, A. C., & Slaney, M. (2001). Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics.
- 4
Koay, C. G., Sarlls, J. E., & Özarslan, E. (2007). Three‐dimensional analytical magnetic resonance imaging phantom in the Fourier domain. Magnetic Resonance in Medicine, 58(2), 430-436.