tfmri.initializers.GlorotNormal
tfmri.initializers.GlorotNormal¶
- class GlorotNormal(seed=None)[source]¶
Bases:
keras.initializers.initializers_v2.GlorotNormal
The Glorot normal initializer, also called Xavier normal initializer.
Note
This initializer can be used as a drop-in replacement for tf.keras.initializers.GlorotNormal. However, this one also supports initialization of complex-valued weights. Simply pass
dtype='complex64'
ordtype='complex128'
to its__call__
method.Also available via the shortcut function
tf.keras.initializers.glorot_normal
.Draws samples from a truncated normal distribution centered on 0 with
stddev = sqrt(2 / (fan_in + fan_out))
wherefan_in
is the number of input units in the weight tensor andfan_out
is the number of output units in the weight tensor.Examples:
>>> # Standalone usage: >>> initializer = tf.keras.initializers.GlorotNormal() >>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.GlorotNormal() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
- Args:
- seed: A Python integer. Used to make the behavior of the initializer
deterministic. Note that a seeded initializer will not produce the same random values across multiple calls, but multiple initializers will produce the same sequence when constructed with the same seed value.
- References:
[Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html)