tfmri.models.ConvBlock2D
tfmri.models.ConvBlock2D¶
- class ConvBlock2D(*args, **kwargs)[source]¶
Bases:
tensorflow_mri.python.models.conv_blocks.ConvBlock
2D convolutional block.
A basic Conv + BN + Activation block. The number of convolutional layers is determined by
filters
. BN and activation are optional.- Parameters
filters –
A list of int numbers or an int number of filters. Given an int input, a single convolution is applied; otherwise a series of convolutions are applied.
kernel_size – An integer or tuple/list of
rank
integers, specifying the size of the convolution window. Can be a single integer to specify the same value for all spatial dimensions.strides – An integer or tuple/list of
rank
integers, specifying the strides of the convolution along each spatial dimension. Can be a single integer to specify the same value for all spatial dimensions.activation – A callable or a Keras activation identifier. The activation to use in all layers. Defaults to
'relu'
.out_activation – A callable or a Keras activation identifier. The activation to use in the last layer. Defaults to
'same'
, in which case we use the same activation as in previous layers as defined byactivation
.use_bias – A boolean, whether the block’s layers use bias vectors. Defaults to True.
kernel_initializer – A
tf.keras.initializers.Initializer
or a Keras initializer identifier. Initializer for convolutional kernels. Defaults to'VarianceScaling'
.bias_initializer – A
tf.keras.initializers.Initializer
or a Keras initializer identifier. Initializer for bias terms. Defaults to'Zeros'
.kernel_regularizer – A
tf.keras.initializers.Regularizer
or a Keras regularizer identifier. Regularizer for convolutional kernels. Defaults to None.bias_regularizer –
A
tf.keras.initializers.Regularizer
or a Keras regularizer identifier. Regularizer for bias terms. Defaults to None.use_batch_norm –
use_sync_bn –
If True, use synchronised batch normalization. Defaults to False.
bn_momentum – A float. Momentum for the moving average in batch normalization.
bn_epsilon –
A float. Small float added to variance to avoid dividing by zero during batch normalization.
use_residual –
A boolean. If True, the input is added to the outputs to create a residual learning block. Defaults to False.
use_dropout –
A boolean. If True, a dropout layer is inserted after each activation. Defaults to False.
dropout_rate –
A float. The dropout rate. Only relevant if
use_dropout
is True. Defaults to 0.3.dropout_type –
A str. The dropout type. Must be one of
'standard'
or'spatial'
. Standard dropout drops individual elements from the feature maps, whereas spatial dropout drops entire feature maps. Only relevant ifuse_dropout
is True. Defaults to'standard'
.**kwargs – Additional keyword arguments to be passed to base class.
Create a basic convolution block.