tfmri.models.UNet1D
tfmri.models.UNet1D¶
- class UNet1D(*args, **kwargs)[source]¶
Bases:
tensorflow_mri.python.models.conv_endec.UNet
1D U-Net model.
- Parameters
filters – A list of int. The number of filters for convolutional layers at each scale. The number of scales is inferred as
len(filters)
.kernel_size – An integer or tuple/list of 1 integers, specifying the size of the convolution window. Can be a single integer to specify the same value for all spatial dimensions.
pool_size – The pooling size for the pooling operations. Defaults to 2.
block_depth – The number of layers in each convolutional block. Defaults to 2.
use_deconv – If True, transpose convolution (deconvolution) will be used instead of up-sampling. This increases the amount memory required during training. Defaults to False.
activation – A callable or a Keras activation identifier. Defaults to
'relu'
.kernel_initializer – A
tf.keras.initializers.Initializer
or a Keras initializer identifier. Initializer for convolutional kernels. Defaults to'VarianceScaling'
.bias_initializer – A
tf.keras.initializers.Initializer
or a Keras initializer identifier. Initializer for bias terms. Defaults to'Zeros'
.kernel_regularizer – A
tf.keras.initializers.Regularizer
or a Keras regularizer identifier. Regularizer for convolutional kernels. Defaults to None.bias_regularizer –
A
tf.keras.initializers.Regularizer
or a Keras regularizer identifier. Regularizer for bias terms. Defaults to None.use_batch_norm –
use_sync_bn –
If True, use synchronised batch normalization. Defaults to False.
bn_momentum – A float. Momentum for the moving average in batch normalization.
bn_epsilon –
A float. Small float added to variance to avoid dividing by zero during batch normalization.
out_channels –
An int. The number of output channels.
out_kernel_size –
An int or a list of 1 int. The size of the convolutional kernel for the output layer. Defaults to
kernel_size
.out_activation –
A callable or a Keras activation identifier. The output activation. Defaults to None.
use_global_residual –
A boolean. If True, adds a global residual connection to create a residual learning network. Defaults to False.
use_dropout –
A boolean. If True, a dropout layer is inserted after each activation. Defaults to False.
dropout_rate –
A float. The dropout rate. Only relevant if
use_dropout
is True. Defaults to 0.3.dropout_type –
A str. The dropout type. Must be one of
'standard'
or'spatial'
. Standard dropout drops individual elements from the feature maps, whereas spatial dropout drops entire feature maps. Only relevant ifuse_dropout
is True. Defaults to'standard'
.use_tight_frame –
A boolean. If True, creates a tight frame U-Net as described in [2]. Defaults to False.
**kwargs – Additional keyword arguments to be passed to base class.
References
- 1
Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
- 2
Han, Y., & Ye, J. C. (2018). Framing U-Net via deep convolutional framelets: Application to sparse-view CT. IEEE transactions on medical imaging, 37(6), 1418-1429.
Creates a UNet model.