tfmri.recon.partial_fourier
tfmri.recon.partial_fourier¶
- partial_fourier(kspace, factors, preserve_phase=None, return_kspace=False, return_complex=None, method='zerofill', **kwargs)¶
Reconstructs an MR image using partial Fourier methods. (deprecated arguments)
Deprecated: SOME ARGUMENTS ARE DEPRECATED:
(return_complex). They will be removed after 2022-09-01. Instructions for updating: Use argumentpreserve_phaseinstead.- Parameters
kspace – A
Tensor. The k-space data. Must have typecomplex64orcomplex128. Must have shape[..., *K], whereKare the spatial frequency dimensions.kspaceshould only contain the observed data, without zero-filling of any kind.factors – A list of
floats. The partial Fourier factors. There must be a factor for each spatial frequency dimension. Each factor must be between 0.5 and 1.0 and indicates the proportion of observed k-space values along the specified dimensions.preserve_phase –
A boolean. If True, keeps the phase information in the reconstructed images. Although it is not possible to reconstruct high-frequency phase details from an incomplete k-space, a low resolution phase map can still be recovered. If True, the output images will be complex-valued.
return_kspace –
A boolean. If True, returns the filled k-space instead of the reconstructed images. This is always complex-valued.
return_complex –
A boolean. If True, returns complex instead of real-valued images.
method – A
string. The partial Fourier reconstruction algorithm. Must be one of"zerofill","homodyne"(homodyne detection method) or"pocs"(projection onto convex sets method).**kwargs – Additional method-specific keyword arguments. See Notes for
details. –
- Returns
A
Tensorwith shape[..., *S]whereS = K / factors. Has typekspace.dtypeif eitherpreserve_phaseorreturn_kspaceis True, and typekspace.dtype.real_dtypeotherwise.
Notes
This function accepts some method-specific arguments:
method="zerofill"accepts no additional arguments.method="homodyne"accepts the following additional keyword arguments:weighting_fn: An optional
string. The weighting function. Must be one of"step","ramp". Defaults to"ramp"."ramp"helps mitigate Gibbs artifact, while"step"has better SNR properties.
method="pocs"accepts the following additional keyword arguments:
References
- 1
Noll, D. C., Nishimura, D. G., & Macovski, A. (1991). Homodyne detection in magnetic resonance imaging. IEEE transactions on medical imaging, 10(2), 154-163.
- 2
Haacke, E. M., Lindskogj, E. D., & Lin, W. (1991). A fast, iterative, partial-Fourier technique capable of local phase recovery. Journal of Magnetic Resonance (1969), 92(1), 126-145.