tfmri.signal.waverec
tfmri.signal.waverec¶
- waverec(coeffs, wavelet, mode='symmetric', axes=None)[source]¶
Multilevel N-dimensional inverse discrete wavelet transform (wavelet reconstruction).
- Parameters
coeffs – A list with the same structure as the output of tfmri.signal.wavedec.
wavelet –
A str or a `pywt.Wavelet`_, or a list thereof. When passed a list, different wavelets are applied along each axis in
axes
.mode –
A str. The padding or signal extension mode. Must be one of the values supported by `tf.pad`_. Defaults to
'symmetric'
.axes –
A list of int. Axes over which to compute the IDWT. Axes may not be repeated. A value of None (the default) selects all axes.
- Returns
A tf.Tensor containing the reconstructed signal.
Examples
>>> import tensorflow as tf >>> import tensorflow_mri as tfmri >>> coeffs = tfmri.signal.wavedec(tf.ones((4, 4)), 'db1') >>> # Levels: >>> len(coeffs)-1 2 >>> tfmri.signal.waverec(coeffs, 'db1') <tf.Tensor: shape=(4, 4), dtype=float32, numpy= array([[0.9999999, 0.9999999, 0.9999999, 0.9999999], [0.9999999, 0.9999999, 0.9999999, 0.9999999], [0.9999999, 0.9999999, 0.9999999, 0.9999999], [0.9999999, 0.9999999, 0.9999999, 0.9999999]], dtype=float32)>
- Raises
ValueError – If passed invalid input values.