tfft.Options
tfft.Options¶
- class Options(*, debugging: tensorflow_nufft.python.ops.nufft_options.DebuggingOptions = DebuggingOptions(check_points_range=False), fftw: tensorflow_nufft.python.ops.nufft_options.FftwOptions = FftwOptions(planning_rigor=<FftwPlanningRigor.AUTO: 0>), max_batch_size: typing.Optional[int] = None, points_range: tensorflow_nufft.python.ops.nufft_options.PointsRange = PointsRange.EXTENDED)¶
Bases:
pydantic.main.BaseModel
Represents options for the
nufft
operator.This object can be used to control the behavior of the
nufft
operator. These are advanced options which may be useful for performance tuning, but are not required for most use cases.Example
>>> options = tfft.Options() >>> options.max_batch_size = 4 >>> tfft.nufft(x, k, options=options)
- debugging¶
Options for debugging. See
tfft.DebuggingOptions
for more information.
- fftw¶
Options for the FFTW library. See
tfft.FftwOptions
for more information.
- max_batch_size¶
An optional
int
. The maximum batch size to use during the vectorized NUFFT computation. If set, limits the internal vectorization batch size to this value. Smaller values may reduce memory usage, but may also reduce performance. If not set, the internal batch size is chosen automatically.- Type
Optional[int]
- points_range¶
An optional
tfft.PointsRange
. Specifies the supported bounds for the nonuniform points. Seetfft.PointsRange
for more information. Defaults totfft.PointsRange.EXTENDED
.